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This work is an extension of a recently developed software tool called MILD (Multi-level 
Immune Learning Detection), which implements a negative selection algorithm for anomaly 
and fault detection that is inspired by the human immune system. The immunity-based 
approach can detect a broad spectrum of known and unforeseen faults. We extend MILD by 
applying a neural network classifier to identify the pattern of fault detectors that are 
activated during fault detection. Consequently, MILD now performs fault detection and 
identification of the system under investigation. This paper describes the application of 
MILD to detect and classify faults of a generic transport aircraft augmented with an 
intelligent flight controller. The intelligent control architecture is designed to accommodate 
faults without the need to explicitly identify them. Adding knowledge about the existence 
and type of a fault will improve the handling qualities of a degraded aircraft and impact 
tactical and strategic maneuvering decisions. In addition, providing fault information to the 
pilot is important for maintaining situational awareness so that he can avoid performing an 
action that might lead to unexpected behavior – e.g., an action that exceeds the remaining 
control authority of the damaged aircraft. We discuss the detection and classification results 
of simulated failures of the aircraft’s control system and show that MILD is effective at 
determining the problem with low false alarm and misclassification rates. 

I. Introduction 
N this paper, we discuss the extension of a recently developed software tool called Multi-level Immune Learning 
Detection (MILD)8 to detect and classify various failures in an intelligent flight control system of a generic 

transport aircraft. The intelligent flight controller uses direct-adaptive neurocontrol architecture for fault 
accommodation to maintain desired aircraft handling qualities.14,29 Earlier studies have established the benefits of 
fault accommodation without explicit identification. One area of weakness that could be strengthened is the control 
dead band induced by commanding a failed surface. Since the approach uses fault accommodation with no 
detection, the dead band, although reducing over time due to learning, is still present and causes degradation in 
handling qualities. This also makes it challenging for outer loop control design. If the failure can be identified, this 
dead band could be further minimized to ensure rapid fault accommodation and better handling qualities. In 
addition, experience has shown that lack of fault identification feedback to the pilot can lead to unexpected behavior 
if a pilot performs an action that exceeds the remaining control authority of the damaged aircraft. Given these 
difficulties, we desire to provide the pilot fault identification information to improve the situational awareness and to 
help prevent problems that are associated with trying to maintain desired handling qualities with a degraded aircraft 
that has less control margin than a nominal aircraft. 

We use a biologically inspired software, MILD8, for fault detection and classification. For the detection part, we 
have implemented the immune-based fault detection using a negative selection algorithm. The biological immune 
system has been successful at protecting the human body against a vast variety of foreign pathogens. A growing 
number of computer scientists have carefully studied the success of this competent natural mechanism and proposed 
computer immune models for solving various problems including fault diagnosis, computer virus detection, and 
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mortgage fraud detection.9 For the classification part, we use a neural network classifier. The power and usefulness 
of artificial neural networks have been demonstrated in several applications including speech synthesis, diagnostic 
problems, medicine, business and finance, robotic control, signal processing, computer vision and many other 
problems that fall under the category of pattern recognition.24-27 

MILD fault detectors are generated using the pitch, roll, and yaw command augmentation signals of the neural 
flight controller during nominal flight. Then, we learn which detectors fire for the various failure cases to do fault 
classification. Previous studies used pitch, roll, and yaw error signals that were extracted before the adaptive neural 
net controller (see Fig. 1). Using the command augmentation signals that are output from the neural flight controller 
results in better features and improved fault detection. The experiment shows that by using the MILD software tool, 
we can detect aircraft flight control system faults with low false alarm rates and can correctly identify the fault type 
by learning the pattern of activated detectors. 

In the following sections, we will describe the problem domain, give an overview of the MILD fault detection 
and classification system, and discuss the experiments and results. We then conclude the paper with potential areas 
for future work. 

 

 

 
Figure 1.  MILD flowchart and the intelligent flight control architecture. 
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II. Problem Domain 
The neural network flight controller18 uses both pre-trained and on-line learning neural networks, and reference 

models that specify desired handling qualities (see Fig. 1). The pre-trained neural networks provide estimates of 
aerodynamic stability and control characteristics required for model inversion. The on-line learning networks 
generate command augmentation signals to compensate for errors in the stability and control derivative estimates as 
well as errors from model inversion. Additionally, the on-line learning networks provide the capability to adapt to 
changes in aircraft dynamics resulting from damage or failure.  

Commands generated by the pilot through rudder pedal and lateral and longitudinal control stick displacements 
are converted into roll rate and aerodynamic normal and lateral acceleration commands by application of stick and 
rudder pedal gains. These acceleration commands are then transformed into the corresponding roll rate, pitch rate, 
and yaw rate commands. The reference models are used to filter the rate commands. Finally, the necessary control 
surface deflections are computed using dynamic inversion of the filtered rate commands.  

Neural network flight controllers use aircraft state information to generate pseudo control augmentation 
commands in order to compensate for errors between the commanded and actual angular velocities. The pilot does 
not have insight into this process and may not know the nature or degree of the problem for which the controller is 
compensating. In many cases, the neural network flight controller makes the failure essentially transparent to the 
pilot. This may become problematic if the pilot performs an action that he might do under normal circumstances, but 
that action exceeds the remaining control authority of a damaged aircraft. Unexpected and undesirable behavior may 
result. 

In this paper, we use the MILD fault detection and classification system to assist the pilot in determining the type 
of failure. The process begins by detecting that a failure has occurred if one or more detectors are activated for a 
specified amount of time. The neural network classifier will then categorize the failure based on the pattern of 
activated detectors. 

III. MILD Overview 
Our fault detection and classification system has two main components, an immunity-based fault detector and a 

neural-network based classifier. The output of the fault detection process, a list of activated detectors, is input to the 
classifier in order to determine the fault type. 

A. Immunity-Based Fault Detection  
The fault detection methodology employs a real-valued negative selection (RNS) algorithm7,11,16 that is based on 

the principle of self-nonself discrimination in the immune system. Basically, the self is the normal pattern of the 
data, and nonself is the potential abnormal pattern or fault of the data.  This negative selection algorithm can be 
summarized as follows7: 

 
• Define self as a collection S of elements in a feature space U, a collection that needs to be monitored. For 

instance, if U corresponds to the space of states of a system represented by a list of features, S can represent 
the subset of states that are considered as normal for the system. 

• Generate a set F of detectors, each of which fails to match any string in S. An approach that mimics the 
immune system generates random detectors and discards those that match any element in the self set.  

• Monitor S for changes by continually matching the detectors in F against S. If any detector ever matches, 
then a change is known to have occurred, as the detectors are designed not to match any representative 
samples of S. 

 
There are two phases in immunity-based fault detection, detector generation and testing. In the detector 

generation phase, the RNS algorithm evolves a set of variable-size detectors that cover the non-self space. A 
detector is defined as d = (c, rd), where c = (c1, c2, …, cm) is an m-dimensional point that corresponds to the center 
of a hypersphere with radius rd. An iterative process, shown in Fig. 2, updates the set of detectors by random 
generation, moving a subset of rejected detectors that overlap self or other detectors, and cloning a subset of the 
matured detectors. 
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Figure 2. Flow diagram showing the algorithmic steps for the real-valued negative selection algorithm. 

 
The self space corresponds to the normal operating states of the system being monitored. Therefore, it is 

important to select features (the m-dimensional point, c) that capture the nominal behavior of the system and also 
exhibit deviations from nominal signatures when the system is off-nominal. The features may be sensor 
measurements or derived quantities. They may also be extended features with moving, overlapping windows of 
multiple time steps to capture typical temporal variations. The values of the features are scaled in the range [0.0 1.0] 
in order to define the self-nonself space with a unit hypercube.  

The detector generation process begins with an initial population of candidate detectors whose locations are 
chosen randomly. On the first iteration, when there are no matured detectors, the radius of a particular candidate 
detector is determined according to the minimum of the distances from it to the self points. On subsequent iterations, 
the radius of a candidate detector is determined according to the minimum of the distances from it to the self points 
and matured detectors. Distance calculations between two points x and y use the Minkowski distance, defined as 

 ( ) ( ) λλ 1
, ∑ −= ii yxyxD  (1) 

where x = {x1, x2, … xN}, y = {y1, y2, … yN}, and λ = N. The Minkowski distance with λ = 2 is equivalent to 
Euclidean distance.  
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 a) Calculate detector radius b) Moving a detector c) Cloning a detector 

Figure 3. Illustration of steps used in the detector maturation process. a) Calculation of a detector radius when 
the candidate detector is closest to a self point. b) If a candidate detector overlaps with an existing detector, then the 
candidate detector (i.e. its center c) is moved in the opposite direction to its nearest neighbor detector. c) Given a 
mature detector, a clone is created at a distance equal to its radius, and the direction where it is created is selected 
at random. 

If the candidate detector location (i.e., the center of the detector) is closest to a self point, then the detector radius 
is set as rd = (D – rs), where D is the distance between the centers of the candidate detector and the nearest self point 
and rs is the radius associated with the allowable variation of a self point (see Fig. 3a). A candidate detector is 
rejected if the distance D is less than the sum of the minimum detector radius and the self point radius since, in that 
case, the detector would cover some of the space containing self. If the candidate detector location is closest to a 
matured detector, then the detector radius is simply set to the distance D. If this distance is less than the minimum 
allowable detector radius, the candidate detector is rejected. Additionally, if the candidate detector overlaps a 
matured detector more than a user-defined threshold, it is rejected. The amount of overlap, bounded between 0 and 
1, is calculated as 
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where the parameters are as indicated in Fig. 4. 
 

 
Figure 4. Illustration of detector overlap. 

 
Some of the rejected detectors are selected to be moved and subsequently re-evaluated in the next iteration. Let 

drej = (crej, rd
rej) denote a rejected detector and dnearest = (cnearest, rd

nearest) its nearest detector (or self point), then the 
center of drej is moved such that 

 
dir
dircc rejnew α+=  (3) 
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where dir = crej – cnearest, ||•|| denotes the norm of a m-dimensional vector, and α is a parameter that determines 
how far the center is moved. Note that a new center location is specified for the moved detector but the radius will 
be calculated in the next iteration and will likely be different than the original detector.   

At each iteration some of the better detectors are chosen to be cloned. Let d = (cold, rd
old) denote a detector to be 

cloned and dclone = (cclone, rd
clone) denote a cloned detector whose center is located at distance rd

old from d. The center 
of dclone is computed as 

 
dir
dirrcc old

d
oldclone +=  (4) 

where dir = cold – crand, and crand is a random point in the unit hypercube. Similar to the move operation, the 
radius of the cloned detector is not calculated until the next iteration and may have a different radius than the old 
detector. 

Finally, each iteration has some random detector locations to allow exploration of uncovered regions of non-self 
space. In summary, after the first iteration (for which there are only random detector locations), the set of candidate 
detector locations is populated from random generation, moving some of the rejected detectors in the previous 
iteration, and cloning some of the matured detectors. For a particular candidate detector location, the radius is 
calculated as discussed previously. The candidate detector is then fully specified with a center and a radius. If the 
detector does not cover self points, has sufficient size, and does not have too much overlap with existing detectors, it 
is kept and added to the list of matured detectors. Otherwise, it is rejected and moved or discarded. This process 
continues until there is sufficient coverage of the non-self space.  

Figure 5 shows two sample iterations of the detector generation process in two dimensions. There are 20 self 
points with identical radii distributed randomly in the unit square and shown as filled green circles. In Fig. 5a, the 25 
blue circles are detectors that have been accepted out of a total of 50 possible detector locations after the conclusion 
of the first iteration. In this example, all matured detectors have been selected for cloning rather than just a subset, so 
the 25 black pluses resulting from the clone operation are candidate detector locations in the 2nd iteration. Of the 25 
detector locations that were rejected in the first iteration, 10 were moved for reconsideration in the 2nd iteration and 
are shown as red x’s. There are 50 magenta asterisks that are random detector locations. In all, there are 85 candidate 
detector locations that are evaluated in the 2nd iteration. After calculating the radius for each candidate and checking 
for suitability of the resulting detector, 20 of them are accepted and are shown as cyan circles. Figure 5b shows the 
188 detectors that are generated after 20 iterations. There is excellent coverage of the non-self space.  
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Figure 5. Sample iterations from the detector generation process in two dimensions. 

In the testing phase, samples in test datasets are checked against the generated detectors. The distance D(cp, c) 
from a test point p = (cp, rp) to a detector d = (c, rd) is calculated according to equation (1). If the distance, D < (rp + 
rd), the detector gets activated, indicating a possible fault. By noting which detectors are activated for known faults, 
we can learn to classify the faults based on the pattern of activated detectors. This is discussed in the following 
section. 

B. Neural Network Based Fault Classification  
For the neural network based classifier, we use several multilayer perceptron (MLP) neural networks with back-

propagation (BP) algorithm for classifying different types of aircraft failures. The MLP model using the back-
propagation algorithm is one of the well-known neural network classifiers, which consist of sets of nodes arranged 
in multiple layers with weighted connections only between nodes in the adjacent layers. The network architecture is 
made up of three layers: the input layer, one hidden layer, and the output layer. A schematic of a 3-layer MLP model 
is shown in Fig. 6. 
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Figure 6. Schematic of a 3-layer MLP model. 

 
Figure 7. Normalization of activated detectors across time for neural network input. 

 
The classification process consists of two phases, learning and classification. In the learning phase, the activated 

detector data for a particular fault types is used as the inputs to the MLP. A different neural network is built for each 
fault type that is to be classified. For a particular network, the number of input nodes is equal to the maximum 
number of activated detectors for that fault type. After a normalization process, the number of times each detector 
has fired becomes the data for the input nodes of the MLP. The normalization presents the number of detectors fired 
over a window of time.  Figure 7 shows an example of the detectors being fired over a period of time. Each detector 
is given a different color to show its activities over time. Each network has one output node whose output ranges 
from 0 to 1. A value of 0 means no fault, while a value of 1 implies fault with high confidence. The learning process 
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modifies the weights of the node connections in order to define a function that maps the pattern of activated 
detectors to a fault type. This is done for each MLP with the given training data.  

In the classification phase, the unlabeled output from MILD fault detection is normalized in the same way as the 
training data and input to each of the separate neural networks, which then classify the failure using the mapping 
functions learned in the training phase. Since more than one neural network may indicate a degree of membership 
(e.g., the output of network 1 is 0.8, the output of network 2 is 0.4, etc.), we must decide how to classify the data. 
The simplest approach is to assign 100% confidence for the network that has the highest output value. Another 
approach is to split the vote proportionately. We used the first approach in this study. 

IV. Experiments and Results 
Piloted simulation data was acquired at 100 Hz using the FLTz flight simulator.29 FLTz is a 6 degrees-of-

freedom, non-linear, high-fidelity simulator that can simulate a variety of aircraft and controller types. Our 
simulations used a transport aircraft similar to the Boeing 757 that incorporates a fault tolerant neural flight control 
system that does not perform explicit fault identification. FLTz has generic control panels and flight displays that are 
representative of typical aircraft displays, facilitating development, evaluation, and demonstration. 

FLTz can simulate many types of faults. We consider only faults affecting ailerons, horizontal stabilizer, 
elevators, and rudder. Moreover, we limit the types of faults to hard-to-position and loss-of-effectiveness control 
surface faults. A hard-to-position (HTP) fault results when the control surface moves to and is subsequently stuck at 
a position that is not commanded. A loss-of-effectiveness (LOE) fault is due to reduced gain in the control surface 
actuation mechanisms and results in less control surface movement than expected for a given command signal.  

Two pilots independently flew the simulated aircraft in nominal cruise conditions with zero and moderate 
turbulence. Each flight consisted of a series of roll and pitch maneuvers: roll 10º left then right, roll 20º left then 
right, roll 30º left then right, pitch 5º up then down, and pitch 10º up then down (see Fig. 8). Approximately 50 
minutes of fault-free simulated flight data was collected. Additionally, approximately 15 minutes of data for each 
fault type was collected. 

 
Figure 8.  Example of simulated flight. 

Previous studies used roll, pitch, and yaw error rates for the feature vector, from which MILD detectors are 
generated. The error rates correspond to the values that are input into the neural net flight controller. Here, we use 
the control augmentation commands in roll, pitch, and yaw that are output from the neural network controller for the 
feature vector. Figures 9 and 10 show the signals before and after the neural net controller for the same simulated 
flight (left aileron stuck at –10 degrees). Using the signals that are output from the neural net controller gives more 
pronounced features, which results in better fault detection with fewer false negatives and positives. 
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Figure 9. Neural net controller input signals – angular velocity error rates. 

 
Figure 10. Neural net controller output signals – control augmentation commands. 

In this paper, we limit our discussion to hard-to-position faults of the left and right ailerons, and the left and right 
elevators. The magnitudes for the aileron failures are ±15º. The magnitudes for the elevator faults are ±10º. Figures 
11-12 show some examples of the features that result from aileron and elevator faults. After some processing, these 
signals are fed into MILD and activate detectors in the non-self space. The elevator failure primarily affects the pitch 
axis and causes the pitch control augmentation command to increase as the run progresses. There is also significant 
coupling in the roll axis as evidenced by the offset in the roll augmentation commands during the pitch maneuvers 
(starting around 60 seconds). The aileron fault primarily affects the roll axis and the magnitude of the roll command 
augmentation during the roll maneuvers (up to about 60 seconds) is much larger than for the elevator failure. There 
is insignificant coupling in the other axes. Figure 13 shows an example of the normal data used to generate the 
detectors. 
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Figure 11. Features for simulated flight with left elevator stuck at -10º.  

 
Figure 12. Features for simulated flight with right aileron stuck at +15º. 

In order to obtain low or zero false alarm rates, we apply a threshold to the fault detection process so that it 
ignores the fault if the features are detected only occasionally. The detectors have to fire for a certain percentage of 
time over a window of 2 seconds in order to consider the data faulty. Although adding this threshold decreases the 
detection rates slightly, it greatly improves the false alarm rates. Tables 1 and 2 show the average fault detection 
results before and after placing the threshold for 10 different sets of detectors in the non-self space. These detector 
sets are generated for the same nominal data but use different random number seeds for the detector generation 
process, which results in different detector coverage of the non-self space. For the fault type, we use ±L/±R to 
represent up (positive) and down (negative) deflection for the left/right aileron and elevator.  
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Figure 13. Features for simulated nominal flight. 

 

Table 1. Statistical results of 10 detector sets before placing the activation threshold. 

Detection Rate (%) False Alarm Rate (%) Fault Type Activated 
Detectors Mean Std Deviation Mean Std Deviation 

+L elevator 6 94.7 0.88 1.19 0.53 
-L elevator 7 83.2 0.94 1.03 0.17 
+R elevator 8 92.9 0.92 1.08 0.36 
-R elevator 9 88.6 0.89 0.98 0.18 
+L aileron 4 99.5 1.06 0.26 0.17 
-L aileron 9 97.8 1.22 0.35 0.12 
+R aileron 8 98.7 1.09 0.72 0.11 
-R aileron 11 96.2 1.11 0.28 0.24 

 

Table 2. Statistical results of 10 detector sets after placing the activation threshold. 

Detection Rate (%) False Alarm Rate (%) Fault Type Activated 
Detectors Mean Std Deviation Mean Std Deviation 

+L elevator 6 92.3 0.84 0.49 0.07 
-L elevator 7 81.6 0.92 0.53 0.08 
+R elevator 8 89.9 0.86 0.38 0.09 
-R elevator 9 85.3 0.83 0.37 0.05 
+L aileron 4 94.6 0.89 0 0 
-L aileron 9 93.4 0.98 0 0 
+R aileron 8 96.8 1.03 0 0 
-R aileron 11 92.1 0.98 0 0 

 
In general, MILD achieves good detection rates with few or no false alarms. The detection rates for the elevator 

faults are slightly lower than for the aileron faults. For some of the elevator fault data, the features are similar to the 
nominal data and no detectors are activated. Table 3 shows the performance of the neural network classifier on 
classifying aileron and elevator faults. Perfect classification would have one’s on the diagonal and zero’s elsewhere. 
As with the detection results, the elevator faults are generally harder to classify. Additionally, the elevator faults 
may be misclassified as one of three other classes (including class ‘none’) whereas the aileron faults are 
misclassified as one of two other classes.  
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Table 3. Performance of neural network classifier on classifying aileron and elevator faults. 

 

NONE 

 
+L  

elevator 
-L  

elevator 

 
+R  

elevator 
-R  

elevator 
+L 

aileron 
-L 

aileron 
+R 

aileron 
-R 

aileron 

NONE 1 0 0 0 0 0 0 0 0 
+L elevator 0.08 0.82 0.02 0 0.08 0 0 0 0 
-L elevator 0.11 0.04 0.79 0.06 0 0 0 0 0 
+R elevator 0.06 0 0.07 0.84 0.03 0 0 0 0 
-R elevator 0.02 0.07 0.03 0 0.88 0 0 0 0 
+L aileron 0.02 0 0 0 0 0.92 0 0.06 0 
-L aileron 0.04 0 0 0 0 0 0.89 0 0.07 
+R aileron 0.07 0 0 0 0 0.11 0 0.82 0 
-R aileron 0.02 0 0 0 0 0 0.04 0 0.92 

 

V. Conclusions 
Previous work has shown that MILD is an effective tool for detecting aircraft faults. In this work, we have 

improved on previous detection results by using the output of the neural network instead of the input and have 
demonstrated a MILD add-on: a neural-network fault classifier, which is able to classify different types of faults 
based on the pattern of detectors that are activated. Together, the fault detector and classifier provide a means to 
improve the pilot’s situational awareness of aircraft faults that may be masked by the neural net flight controller. 
MILD output may also be used in the feedback control loop to improve aircraft handling qualities under failures. 

Further areas for research include extending the analysis to other flight regimes such as approach to landing, 
investigating the sensitivity of the detection and classification results to different pilots, and examining other 
classification techniques. For MILD, we will explore how we can further optimize the detector generation phase to 
reduce the training and fault detection time. Furthermore, we plan to examine higher order detector shapes and the 
concept of a gene library to enrich the detection process.  
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